- Oggetto:
- Oggetto:
Meccanica statistica del disequilibrio: fondamenti e applicazioni
- Oggetto:
Anno accademico 2012/2013
- Codice dell'attività didattica
- INT0374
- Docente
- Prof. Lamberto Rondoni (Titolare del corso)
- Corso di studi
- Laurea Magistrale Interateneo in Fisica dei sistemi complessi
- Anno
- 1° anno 2° anno
- Periodo didattico
- Terzo periodo didattico
- Tipologia
- C=Affine o integrativo
- Crediti/Valenza
- 6
- SSD dell'attività didattica
- MAT/07 - fisica matematica
- Modalità di erogazione
- Tradizionale
- Lingua di insegnamento
- Inglese
- Modalità di frequenza
- Facoltativa
- Tipologia d'esame
- Prova pratica
- Oggetto:
Sommario insegnamento
- Oggetto:
Obiettivi formativi
Il corso intende fornire le basi teoriche per la comprensione dei fenomeni fisici di disequilibrio, partendo dalle classiche relazioni di fluttuazione e dissipazione e della risposta lineare, per arrivare alle moderne teorie e relazioni di fluttuazione, che sono di interesse in sistemi molto lontani dall'equilibrio e sopratutto nelle moderne bio e nanotecnologie.
- Oggetto:
Programma
Termodinamica del disequilibrio: equilibrio locale, equazioni di bilancio e idrodinamiche;
moto Browniano e teorema di fluttuazione-dissipazione; reciprocità di Onsager;
relazioni di Green e Kubo; teoria di Onsager e Machlup.
Ensembles and misure invarianti: fondamenti microscopici e ruolo del caos; ipotesi ergodica e ipotesi caotica; trasporto anomalo. Equazione di Boltzmann.
Sistemi lontani dall'equilibrio e di scala nanoscopica: equivalenza e non-equivalenza degli
ensemble; modelli dinamici; estensioni della teoria lineare; relazioni transienti di fluttuazione
(Evans-Searles, Jarzynski, Crooks, Hatano-Sasa); relazioni stazionarie di fluttuazione (Evans-Cohen-Morriss, Gallavotti-Cohen); legami con la risposta lineare.Nonequilibrium thermodynamics: local equilibrium, balance equations and hydrodynamic
equations; Brownian motion and fluctuation-dissipation theorem; Onsager reciprocal
relations; Green-Kubo relations; Onsager-Machlup theory.
Ensembles and invariant measures: microscopic foundations and the role of chaos;
ergodic and chaotic hypotheses; anomalous transport. Boltzmann equation.
Far from equilibrium and nanoscale systems: Equivalence and non-equivalence of
ensembles;
dynamical models; extensions of the linear theory to far from equilibrium systems; transient
fluctuation relations (Evans-Searles, Jarzynski, Crooks, Hatano-Sasa); steady state
fluctuation relations (Evans-Cohen-Morriss, Gallavotti-Cohen); link with linear response.Testi consigliati e bibliografia
- Oggetto:
D. J. Evans, G. P. Morriss, Statistical mechanics of nonequilibrium liquids, Cambridge Univ. Press (2008) H. B. Callen, Thermodynamics, Wiley (1966) E. Fermi, Thermodynamics, Dover (1956) S. R. de Groot, P. Mazur, Non-equilibrium thermodynamics, Dover (1984) H. Risken, The Fokker-Planck equation, Springer (1989) R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II, Springer-Verlag (1983) D. A. Kirzhnits, Field Theoretical Methods in Many-Body Systems, Pergamon Press (1967) M. I. Friedlin and A. D. Wentzell. Random Perturbations of Dynamical Systems, Berlin, Springer, (1984) G. Gallavotti. Statistical Mechanics: a Short Treatise. Springer Verlag Berlin, 2000 Carlo Cercignani, The Boltzmann Equation and Its Applications, New York, Springer- Verlag, 1988
- Oggetto:
Note
L'aula di lezione è presso il Dipartimento di Scienze Matematiche del Politecnico di Torino.
- Oggetto:
Altre informazioni
http://calvino.polito.it/~rondoni/Didattica/Nonequil/- Oggetto: