Vai al contenuto principale
Oggetto:
Oggetto:

Meccanica statistica del disequilibrio: fondamenti e applicazioni

Oggetto:

Anno accademico 2012/2013

Codice dell'attività didattica
INT0374
Docente
Prof. Lamberto Rondoni (Titolare del corso)
Corso di studi
Laurea Magistrale Interateneo in Fisica dei sistemi complessi
Anno
1° anno 2° anno
Periodo didattico
Terzo periodo didattico
Tipologia
C=Affine o integrativo
Crediti/Valenza
6
SSD dell'attività didattica
MAT/07 - fisica matematica
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Inglese
Modalità di frequenza
Facoltativa
Tipologia d'esame
Prova pratica
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Il corso intende fornire le basi teoriche per la comprensione dei fenomeni fisici di disequilibrio, partendo dalle classiche relazioni di fluttuazione e dissipazione e della risposta lineare, per arrivare alle moderne teorie e relazioni di fluttuazione, che sono di interesse in sistemi molto lontani dall'equilibrio e sopratutto nelle moderne bio e nanotecnologie.

Oggetto:

Programma

Termodinamica del disequilibrio: equilibrio locale, equazioni di bilancio e idrodinamiche;
moto Browniano e teorema di fluttuazione-dissipazione; reciprocità di Onsager;
relazioni di Green e Kubo; teoria di Onsager e Machlup.
Ensembles and misure invarianti: fondamenti microscopici e ruolo del caos; ipotesi ergodica e ipotesi caotica; trasporto anomalo. Equazione di Boltzmann.
Sistemi lontani dall'equilibrio e di scala nanoscopica: equivalenza e non-equivalenza degli
ensemble; modelli dinamici; estensioni della teoria lineare; relazioni transienti di fluttuazione
(Evans-Searles, Jarzynski, Crooks, Hatano-Sasa); relazioni stazionarie di fluttuazione (Evans-Cohen-Morriss, Gallavotti-Cohen); legami con la risposta lineare.

Nonequilibrium thermodynamics: local equilibrium, balance equations and hydrodynamic
equations; Brownian motion and fluctuation-dissipation theorem; Onsager reciprocal
relations; Green-Kubo relations; Onsager-Machlup theory.
Ensembles and invariant measures: microscopic foundations and the role of chaos;
ergodic and chaotic hypotheses; anomalous transport. Boltzmann equation.
Far from equilibrium and nanoscale systems: Equivalence and non-equivalence of
ensembles;
dynamical models; extensions of the linear theory to far from equilibrium systems; transient
fluctuation relations (Evans-Searles, Jarzynski, Crooks, Hatano-Sasa); steady state
fluctuation relations (Evans-Cohen-Morriss, Gallavotti-Cohen); link with linear response.

Testi consigliati e bibliografia

Oggetto:

D. J. Evans, G. P. Morriss, Statistical mechanics of nonequilibrium liquids, Cambridge Univ. Press (2008) H. B. Callen, Thermodynamics, Wiley (1966) E. Fermi, Thermodynamics, Dover (1956) S. R. de Groot, P. Mazur, Non-equilibrium thermodynamics, Dover (1984) H. Risken, The Fokker-Planck equation, Springer (1989) R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II, Springer-Verlag (1983) D. A. Kirzhnits, Field Theoretical Methods in Many-Body Systems, Pergamon Press (1967) M. I. Friedlin and A. D. Wentzell. Random Perturbations of Dynamical Systems, Berlin, Springer, (1984) G. Gallavotti. Statistical Mechanics: a Short Treatise. Springer Verlag Berlin, 2000 Carlo Cercignani, The Boltzmann Equation and Its Applications, New York, Springer- Verlag, 1988



Oggetto:

Note

L'aula di lezione è presso il Dipartimento di Scienze Matematiche del Politecnico di Torino.

Oggetto:

Altre informazioni

http://calvino.polito.it/~rondoni/Didattica/Nonequil/
Oggetto:
Ultimo aggiornamento: 02/07/2013 09:54
Location: https://fisica-sc.campusnet.unito.it/robots.html
Non cliccare qui!