- Oggetto:
- Oggetto:
Meccanica statistica B
- Oggetto:
Statistical Mechanics B
- Oggetto:
Anno accademico 2023/2024
- Codice dell'attività didattica
- INT0352
- Docente
- Alberto Lerda (Titolare del corso)
- Corso di studi
- Laurea Magistrale Interateneo in Fisica dei sistemi complessi
- Anno
- 1° anno
- Periodo didattico
- Primo Semestre
- Tipologia
- B=Caratterizzante
- Crediti/Valenza
- 6
- SSD dell'attività didattica
- FIS/02 - fisica teorica, modelli e metodi matematici
- Modalità di erogazione
- Tradizionale
- Lingua di insegnamento
- Italiano
- Modalità di frequenza
- Facoltativa
- Tipologia d'esame
- Orale
- Prerequisiti
-
Conoscenza dei fondamenti della meccanica classica, dell'elettromagnetismo e della meccanica quantistica.Knowledge on the fundamentals of Classical Mechanics, of Electromagnetism and Quantum Mechanics.
- Propedeutico a
-
- Oggetto:
Sommario insegnamento
- Oggetto:
Obiettivi formativi
Fornire alle studentesse e agli studenti i concetti base della meccanica statistica e delle sue applicazioni
To provide the students with the basic concepts of statistical mechanics and its applications.
- Oggetto:
Risultati dell'apprendimento attesi
Al termine dell'insegnamento si conosceranno i concetti fondamentali della meccanica statistica classica e quantistica.
At the end of the course students will know the fundamental concepts of classical and quantum statistical mechanics.
- Oggetto:
Modalità di insegnamento
Durante l'a.a. 2023-24, le lezioni saranno in presenza.
E' fortemente consigliata la frequenza alle lezioni.
E' consigliata l'iscrizione alla pagina del corso su Moodle all'indirizzo
https://elearning.unito.it/scienzedellanatura/course/view.php?id=3434
Qui verranno messe tutte le informazioni relative al corso.
During the academic year 2023/24 the lectures will be delivered in class.
Attendance to the lectures is strongly recommended.
It is recommended to enrol also on Moodle following this link
https://elearning.unito.it/scienzedellanatura/course/view.php?id=3434
On this page all important information about the lectures will be posted.
- Oggetto:
Modalità di verifica dell'apprendimento
esame orale; le domande riguarderanno i principali argomenti trattati a lezione con i relativi calcoli e dimostrazioni.
Oral examination.
- Oggetto:
Attività di supporto
- Oggetto:
Programma
Nell'isegnamento vengono studiate le basi statistiche della termodinamica, discutendo in particolare l'approccio all'equilibrio, la teoria degli insiemi statistici e le transizioni di fase. Come applicazioni, verranno studiati vari sistemi statistici, in particolare i gas ideali, i sistemi magnetici.Programma del corso di Meccanica Statistica B (a.a. 2023/2024)
- Introduzione al corso e richiami di termodinamica.
- Meccanica statistica classica: gli ensembles di Gibbs.
- L'ensemble microcanonico:
- Collegamento con la termodinamica. Formula dell'entropia.
- Esempi e applicazioni dell'ensemble microcanonico.
- Paradosso di Gibbs e sua risoluzione.
- L'ensemble canonico:
- Funzione di partizione ed energia libera di Helmoltz.
- Esempi ed applicazioni dell'ensemble canonico.
- Teorema di Nernst.
- L'ensemble gran-canonico:
- La funzione di partizione gran-canonica.
- Esempi ed applicazioni dell'ensemble gran-canonico.
- Introduzione alla meccanica statistica quantistica.
- La matrice densità.
- Esempi ed applicazioni per sistemi ad una particella.
- La matrice densità dell'oscillatore armonico.
- Sistemi di particelle identiche: Statistica di Bose-Einstein e di Fermi-Dirac.
- La matrice densità per N particelle libere.
- I gas ideali quantistici.
- Il gas ideale di Bose:
- Proprietà generali.
- Limiti di alte e basse temperature.
- Condensazione di Bose-Einstein: esempi e applicazioni.
- Il gas ideale di Fermi:
- Proprietà generali.
- Energia di Fermi.
- Limiti di alte e basse temperature.
- Il gas di fononi: teorie di Einstein e di Debye per il calore specifico dei solidi.
- Il diamagnetismo di Landau e livelli di Landau.
- Introduzione alle transizioni di fase:
- Descrizione termodinamica delle transizioni di fase e loro classificazione.
- Regola di Gibbs.
- Introduzione alla teoria di Lee-Yang per le transizioni di fase:
- Teoremi di Lee-Yang;
- Singolarità della funzione di partizione; esempi ed applicazioni.
- Introduzione al modello di Ising:
- Il modello di Ising in d=1.
- Il modello di Ising in d=2:
- Sviluppo ad alte temperature e basse temperature
- Dualità di Kramers-Wannier e punto critico.
- La teoria del campo medio applicata al modello di Ising
- Introduzione ai vetri di spin (modello di Sherrington e Kirkpatrick) e al meccanismo della rottura della simmetrica delle repliche
- Commenti conclusivi.
The course aims at providing the basic concepts of thermodynamics, discussing in particular the equilibrium processes, the theory of statistical ensembles, and phase transitions. Several different statistical systems will be studied, in particular the ideal gases, the magnetic systems.
Programme of the course "Statistical Mechanics B" (a.y. 2022/2023)
- Introduction to the course and recalls to thermodynamics.
- Classical Statistical Mechanics: Gibbs ensembles.
- Microcanonical ensemble:
- Link to Thermodynamics. Entropy's formula.
- Examples and applications of microcanonical ensemble.
- Gibbs paradox and its solution.
- Canonical ensemble:
- Partition function and Helmotz Free Energy.
- Examples and applications of canonical ensemble.
- Nernst theorem.
- Grand-canonical ensemble:
- Grand-canonical partition function.
- Examples and applications of grand-canonical ensemble.
- Introduction to Quantum Statistical Mechanics.
- Density matrix.
- Examples and applications to single particle systems.
- Density matrix for the harmonic oscillator.
- Identical particles systems: Bose-Einstein and Fermi-Dirac statistics.
- Density matrix for N free particles.
- Quantum Ideal Gas.
- Bose ideal gas:
- General properties.
- High and low temperatures limits.
- Bose-Einstein condensation: examples and applications.
- Fermi ideal gas:
- General properties. Fermi energy.
- High and low temperatures limits.
- Phonon gas: Einstein and Debye theories for solid specific heat.
- Landau diamagnetism and Landau levels.
- Introduction to phase transitions:
- Thermodynamic description of phase transitions and their classification.
- Gibbs rule.
- Introduction to Lee-Yang theory for phase transitions:
- Lee-Yang theorems;
- Partition function singolarities; examples and applications.
- Introduction to Ising model:
- Ising model in d=1.
- Ising model in d=2:
- Expansion at high and low temperatures.
- Kramers-Wannier duality and critical point.
- Mean field theory applied to Ising model.
- Introduction to spin glasses (Sherrington-Kirkpatrick model) and to the replica symmetry breaking
- Final comments.
Testi consigliati e bibliografia
- Oggetto:
- K. Huang, Meccanica Statistica, Zanichelli;
- R.K. Pathria & P.D. Beale, Statistical Mechanics, Elsevier Ltd.;
- L.E. Reichl, A modern course in Statistical Physics, Univ. of Texas Press.
- Oggetto:
Orario lezioni
Giorni Ore Aula Lunedì 9:00 - 11:00 Martedì 9:00 - 11:00 Mercoledì 9:00 - 11:00 Lezioni: dal 25/09/2023 al 12/01/2024
Nota: Le lezioni si terranno in aula C.
Non ci sarà lezione marted' 10 e mercoledì 11 ottobre.- Oggetto:
Note
Frequenza: facoltativa ma fortemente consigliata. Valutazione: esame orale.
Attendance: discretionar but highly recommended. Evaluation: oral examination.
- Oggetto: