- Oggetto:
- Oggetto:
Fisica della materia B
- Oggetto:
Anno accademico 2012/2013
- Codice dell'attività didattica
- INT0360
- Docente
- Prof. Aldo Masoero (Titolare del corso)
- Corso di studi
- Laurea Magistrale Interateneo in Fisica dei sistemi complessi
- Periodo didattico
- Secondo periodo didattico
- Tipologia
- B=Caratterizzante
- Crediti/Valenza
- 6
- SSD dell'attività didattica
- FIS/03 - fisica della materia
- Modalità di erogazione
- Tradizionale
- Lingua di insegnamento
- Italiano
- Modalità di frequenza
- Facoltativa
- Tipologia d'esame
- Orale
- Oggetto:
Sommario insegnamento
- Oggetto:
Obiettivi formativi
Fornire allo studente una conoscenza di carattere generale sulla struttura dei solidi e sulla formazione delle bande di energia; applicazione di metodi statistici allo studio delle loro caratteristiche fisiche; analisi delle proprietà di altre classi di materiali.
- Oggetto:
Programma
1. Struttura dei cristalli e bande elettroniche nei solidi (ore lezione 16)
Reticolo diretto e reciproco ed elementi di simmetria. Diffrazione da raggi X. Teoria di Laue e tecniche sperimentali di diffrazione., Fattori di struttura geometrico e di scattering atomico. Cella primitiva di Wigner Seitz. Costruzione di Ewald.
Modello di Drude. Conduttività elettrica e termica degli elettroni in un conduttore. Effetto Hall e magnetoresistenza. Modello di Sommerfield per gli elettroni in un solido.
Propagazione elettronica in un reticolo cristallino. Modello ad elettroni quasi liberi. Origine della struttura a bande di energia. Teorema di Bloch e relative implicazioni.Livelli energetici vicino ad un singolo piano di Bragg. Bande di energia in una dimensione. Metodi di calcolo della struttura a bande (cenni). Modello ad elettroni fortemente legati.
Modello semiclassico per la dinamica degli elettroni nelle bande.Massa efficace, tensore di massa efficace.
2.Proprietà magnetiche e superconduttive (ore lezione 16)
Hamiltoniana di spin nel modello di Heisenberg. Interazione magnetica in un gas d' elettroni liberi. Suscettività diamagnetica. Paramagnetismo.
Equazione del paramagnetismo di Langevin e legge di Curie. Origine dei momenti magnetici permanenti. Ordinamento ferromagnetico, antiferromagnetico, ferrimagnetico. Campo molecolare di Weiss. Interazione di scambio. Domini magnetici. Dinamica delle pareti di Bloch, perdita magnetica in regime di magnetizzazione ciclica. Transizioni di fase, legge di Curie-Weiss, Magnetizzazione a saturazione e sua dipendenza termica, Onde di spin e magnoni.
Proprietà magnetiche di un superconduttore. Effetto Meissner. Origine delle correnti persistenti, Curva di magnetizzazione. Parametri critici, Campo critico, Superconduttori del I e del II tipo, Termodinamica della trasformazione di fase normale/superconduttore, Equazioni di London e di Pippard. Quantizzazione del flusso, Effetto Josephson dc e ac e applicazioni metrologiche.
3.Metodi statistici (ore lezione 16)
Fondamenti di meccanica statistica. Metodi approssimati. Principi variazionali, Sistemi fermionici. Paramagnetismo di Pauli.
Modello di Ising: definizione, equivalenza con altri modelli; legge binaria; applicazione alla trasformazione ordine-disordine nelle leghe.
Magnetizzazione spontanea. Approssimazioni di Bragg –Williams e di Bethe-Peierls. Modello di Ising unidimensionale.
Fenomeni critici: parametro d’ordine; funzione di correlazione; teorema di fluttuazione-dissipazione.Esponenti critici; invarianza di scala. Applicazione allo studio della transizione tra le fasi superconduttiva e normale di un superconduttore.1.Crystal structure and elettronic bands in solids (16 hours)
The crystal and reciprocal lattice, main simmetry elements. X rays diffraction. The Von Laue theory and experimental techniques of diffraction. The geometrical structure factor and the atomic form factor. Wigner-Seitz primitive cell. The Ewald construction.
The Drude model. Thermal and electrical conductivity of the electrons in a metal. The Hall effect and magnetoresistance. The Sommerfield model for the electrons in solids.
Electronic transport in a crystal lattice. Electrons in a weak periodic potential. Energy bands structure. The Bloch’s theorem and related general remarks. Energy levels near a single Bragg plane. Energy bands in one dimension. Methods for calculating band structure (short account).
The tight binding method. Semiclassical model for the electron dynamics in the energy bands, The effective mass and the effctive mass tensor.
2.Magnetic and superconductive properties (16 hours)
The Spin Hamiltonian in the Heisenberg model. Magnetic interaction in a free elelctronic gas. The diamagnetic susceptibility. The paramagnetism. The equation of the Langevin’s paramagnetism and Curie law. The origin of the permanent magnetic moments of the electrons in a ferromagnetic solid. The ferromagnetic, antiferromagnetic, ferrimagnetic order, The Weiss’s molecular field. Electron exchange interaction, The magnetic domains. Bloch walls dinamic, the magnetic loss in a cyclic magnetization regime. The phase transition from ferromagnetic to paramagnetic order. The Curie -Weiss law. The temperature dependence of the saturation’s magnetization. Spin waves and magnons.
Magnetic proiperties of a superconductor. The Meissner effect. Persistent surface supercurrents. The magnetization curve. Critical parameters.Critical field. Type I and type II superconductors. Thermodinamics of the normal/superconductive transition. London ad Pippard equations. The flux quantization. DC and AC Josephson effect, application to the electrical metrology.
3.Statistical methods (16 hours)
Fundaments of statistical mechanics. Approximation methods. Variational principles, Fermionic systems. The Pauli paramagnetism.
The Ising model: definition, equivalence with other models. The binary law. Application to the order/disorder transformation in the metal alloys.
Spontaneous magnetization. The Bragg-Williams and the Bethe- Peierls transformation. Ising unidimensional model.
Critical phenomena, order parameters, correlation function, fluctuation-dissipation theorem. Critical exponents. Scale unvariance. Application to the study of the transition from the superconductive to the normal state of a superconductor.Testi consigliati e bibliografia
- Oggetto:
N.W. Ascroft, N.D. Mermin “Solid State Physics” Ed. Academic Press C. Kittel, “Introduzione alla fisica dello stato solido” Ed Boringhieri, Torino G. Burns “Solid State Physics” Ed Academic Press J.M. Ziman “I principi della teoria dei Solidi” Ed Tamburini L. Lanotte “Elementi di Fisica della Materia”Liguori Editore –Napoli F. Fumi “Fisica dello Stato Solido” Cuen srl 2003 Napoli K. Huang “Meccanica Statistica” Ed Zanichelli
- Oggetto:
Note
Frequenza: facoltativa. Valutazione: esame orale.
- Oggetto:
Moduli didattici
- Fisica della materia B (INT0360C)
- Fisica della materia B (INT0360A)
- Fisica della materia B (INT0360B)
- Oggetto: