Vai al contenuto principale
Oggetto:
Oggetto:

Data Mining: Modellazione Statistica e Apprendimento Automatico dei Dati

Oggetto:

Data Mining, Statistical Modeling and Machine Learning

Oggetto:

Anno accademico 2014/2015

Codice dell'attività didattica
INT0833
Docente
Dott. Ciro Cattuto (Titolare del corso)
Corso di studi
Laurea Magistrale Interateneo in Fisica dei sistemi complessi
Anno
1° anno 2° anno
Periodo didattico
Secondo periodo didattico
Tipologia
C=Affine o integrativo
Crediti/Valenza
6
SSD dell'attività didattica
FIS/02 - fisica teorica, modelli e metodi matematici
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Italiano
Modalità di frequenza
Obbligatoria
Tipologia d'esame
Orale
Prerequisiti
Analisi matematica, algebra lineare, elementi di statistica e probabilità.
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Il corso si pone l'obiettivo di fornire competenze di base per l'analisi e la modellazione statistica dei dati, con speciale attenzione alle tecniche di apprendimento automatico (machine learning) in contesti sia descrittivi che predittivi. Il corso ha un forte carattere interdisciplinare e copre argomenti tradizionalmente trattati in corsi di laurea di computer science e statistica. Un importante obiettivo del corso è la conoscenza operativa delle tecniche e degli algoritmi trattati. Le lezioni teoriche si alterneranno perciò ad esercitazioni al computer.

Oggetto:

Risultati dell'apprendimento attesi

- compresione teorica dei fondamenti dell'apprendimento automatico (machine learning) dai dati

- capacità di usare alcune librerie Python per il machine learning nel contesto di semplici applicazioni

Oggetto:

Modalità di verifica dell'apprendimento

Discussione alla lavagna ed esercitazioni interattive al computer.

Oggetto:

Programma

- The major paradigms of learning from data, the learning problem, the feasibility of learning

- The architecture of machine learning algorithms: model structure, scoring, and search

- The theory of generalization, the Vapnik-Chervonenkis generalization bound, model complexity penalization, the approximation-generalization tradeoff, bias and variance, the learning curve

- Models and Patterns: parametric and non-parametric models, regression models

- Score functions and optimization techniques. Gradient descent and stochastic gradient descent.

- Linear Models: linear classification, linear regression, ordinary least squares, logistic regression, non-linear transformations

- Overfitting and Regularization: model complexity and overfitting, commonly used regularizers, weight decay and lasso.

- Validation and Cross-Validation: validation set, leave-one-out cross validation, K-fold cross-validation

- Descriptive Modeling: density models, mixture models, the Expectation-Maximization algorithm, cluster analysis, the K-means algorithm, hierarchical clustering

- Predictive Modeling for Classification: linear discriminants, tree models, nearest-neighbor methods, Naive Bayes, feature selection

- Predictive Modeling for Regression: linear regression, generalized linear models

- Singular Value Decomposition, Matrix Factorization, and applications

- Content-based retrieval: text representation and classification, term weighting, latent semantic indexing

Testi consigliati e bibliografia

Oggetto:

- Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin, "Learning from Data"AMLBook 2012

- David J. Hand, Heikki Mannila, Padhraic Smyth, "Principles of Data Mining", MIT Press 2011



Oggetto:

Orario lezioni

GiorniOreAula
Lunedì14:00 - 17:00Aula Wick Dipartimento di Fisica
Venerdì9:00 - 13:00Aula Informatica C Dipartimento di Fisica
Lezioni: dal 19/01/2015 al 13/03/2015

Oggetto:

Note

Le esercitazioni del corso richiedono la capacità di scrivere ed eseguire semplici programmi in Python. La conoscenza del linguaggio di programmazione Python non è richiesta ma ci si aspetta che gli studenti si impegnino per acquisire una sufficiente competenza nell'uso di Python in parallelo alle lezioni del corso.

Oggetto:
Ultimo aggiornamento: 08/06/2015 10:05
Location: https://fisica-sc.campusnet.unito.it/robots.html
Non cliccare qui!