BioPhys

Statistical Physics, Complex Systems, Biological Physics, Precision Medicine

Staff UNITO: Michele Caselle Matteo Osella

Postdoc: Filippo Vale Marta Biondo PhD Students in Complex Systems for Life Sciences: Silvia Lazzardi (III year) Francesco Zirattu (II year) Letizia Pizzini (II year)

PhD Student National Program in Artificial Intelligence: Davide Pirovano (I year)

Several collaborators (wet labs, bioinformatics..)

Daniela Taverna Francesca Orso Mol Biotech Center, Torino

Uni || Stra Andrea Riba

Enzo Medico IRCCS Candiolo

Marco Cosentino Lagomarsino

Antonio Scialdone

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

Matteo Cereda Hugef, Torino

– HUMAN GENETICS FOUNDATION · TORINO –

Research topics

Different research topics:

Gene regulatory networks

Structure and function of recurrent regulatory circuits; Integration of different layers of regulation to identify disease markers;

Tissue/cell-type/disease-type from RNA sequencing data

Universal Statistical laws in Molecular Biology

Machine Learning

Role of data structure and neural network architecture for performance

Common denominator is the application of tools from stat phys and stoch process theory to large-scale (Big?) data analysis. Main keyword: "Personalized Medicine" Use of molecular data to fine tune therapeutic protocols

ML approach to the classification of expression patterns

Classical questions:

Classify samples (e.g., healthy vs cancer) Identify marker genes for classification

F. Valle, M. Osella and M.Caselle *Cancers 2020, 12, 3799.*F. Valle, M. Osella and M.Caselle *Cancers 2022, 14, 1150.*

Topic modelling for text classification

$P(\theta \,|\, G) \propto P(G \,|\, \theta) P(\theta)$

summarisation anabic emotion police

Topic structure of expression patterns

Application: classification of breast cancer samples

Classification based on global patterns rather than few markers...

How can we use these results? Classify new samples, Identify clusters of patients with enhanced survival probability. Select group of marker genes

0

BRCA.Her2 0.0710.0710.0710.79

0.1

0.8

0.01

0.05

0.2

0.950

0

0

039

BRCA.Her2

BRCA.Lum⁻ 0.85

BRCA.Basal

BRCA.Normal

Framework: a "Precision Medicine" approach to Cancer. eal From the gene expression pattern of a given patient we may try to predict the survival probability, the risk of cancer insurgence or relapse and then fine tune the therapy .

а

BioPhys Group

