Vai al contenuto principale
Oggetto:
Oggetto:

Machine Learning

Oggetto:

Machine Learning

Oggetto:

Anno accademico 2023/2024

Codice attività didattica
FIS0125
Docente
Piero Fariselli (Titolare del corso)
Corso di studio
Laurea Magistrale Interateneo in Fisica dei sistemi complessi
Anno
1° anno, 2° anno
Periodo
Primo Semestre
Tipologia
C=Affine o integrativo
Crediti/Valenza
6
SSD attività didattica
FIS/07 - fisica applicata (a beni culturali, ambientali, biologia e medicina)
Erogazione
Tradizionale
Lingua
Italiano
Frequenza
Facoltativa
Tipologia esame
Orale
Prerequisiti

Aver seguito l'insegnamento di Data Mining: Modellazione Statistica e Apprendimento Automatico dei Dati (FIS0180), oppure avere una conoscenza di Python e machine-learning equivalente. Lingua inglese


Have attended the course of Data Mining: Statistical Modeling and Machine Learning of Data (FIS0180), or having an equivalent knwoledge of Python and machine-learning. English language

Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

L'insegnamento ha lo scopo di introdurre e appofondire algoritmi e modelli di apprendimento automatico (Machine Learning) per applicazioni interdisciplinari. Ci si aspetta che lo studente sia già in possesso di conoscenze di base di python e machine learning come quelle fornite dal corso di data mining.

L'insegnamento si prefigge di fornire allo studente la capacità di utilizzare e sviluppare strumenti di machine-learning per l'analisi dei dati, con particolare riferimento ai modelli predittivi. Le lezioni teoriche si alterneranno ad esempi di codice.

The course aims to introduce algorithms and machine learning models for cross-disciplinary applications. The students are expected to have a background of Python and machine learning as the foundations provided by the Data Mining course. This is an advanced course.

The students will be able to analyze and model the data with particular emphasis on the predictive models. The theoretical lectures include examples of programming codes.  

Oggetto:

Risultati dell'apprendimento attesi

Compresione dei fondamenti teorici deli modelli di machine learning presentati e essere in grado di svilupparne dei nuovi. 

The students are expected to possess appropriate knowledge of the theoretical aspects of the presented machine learning models and being able to design new ones.

Oggetto:

Programma

  • Review of machine learning: relation with statistical learning, types of learning (supervised, unsupervised, reinforcement learning, collaborative filtering)
  • Introduction to probabilistic models and learning algorithms: Markov models, hidden Markov models, maximum entropy models, conditional random fields. Graphical models as unifying picture. Introduction to causality.
  • Introduction to Neural Networks: feedforward, convolutional, recurrent, attention layers, transformers, ODE-NN. Generative models: Autoencoders, VAE, GAN.
  • Introduction to decision trees and ensemble learning (bagging and boosting)
  • Concepts of multitask learning and multi-instance learning.
  • Survival analysis and machine learning
  • Foundations of interpretable explainable AI, local/global methods, intrisically interpretable, agnostic methods (DPD, ICE, ALE, LIME, SHAP)
  • Introduction to Deep Reinforcement Learning
  • If time allows:
    • Federated Learning
    • Elements of Quantum Machine Learning
    • Elements of biological-inspired computations for optimization: genetic algorithms, ant colony optimization

  • Review of machine learning: relation with statistical learning, types of learning (supervised, unsupervised, reinforcement learning, collaborative filtering)
  • Introduction to probabilistic models and learning algorithms: Markov models, hidden Markov models, maximum entropy models, conditional random fields. Graphical models as unifying picture. Introduction to causality.
  • Introduction to Neural Networks: feedforward, convolutional, recurrent, attention layers, transformers, ODE-NN. Introduction to Neural Networks: feedforward, convolutional, recurrent, attention layers, transformers, ODE-NN. Generative models: Autoencoders, VAE, GAN.
  • Introduction to decision trees and ensemble learning (bagging and boosting)
  • Concepts of multitask learning and multi-instance learning.
  • Survival analysis and machine learning
  • Foundations of interpretable explainable AI, local/global methods, intrisically interpretable, agnostic methods (DPD, ICE, ALE, LIME, SHAP)
  • Introduction to Deep Reinforcement Learning
  • If time allows:
    • Federated Learning
    • Elements of Quantum Machine Learning
    • Elements of biological-inspired computations for optimization: genetic algorithms, ant colony optimization
Oggetto:

Modalità di insegnamento

Attenzione [Nuovo corso]: da quest'anno le lezioni saranno tenute in lingua inglese.

Lezioni con proiezioni di diapositive, uso di lavagna ed esercizi al computer.

Le lezioni saranno solo in presenza.

Nel caso le problematiche relative al COVID-19 divenissere più serie, le lezioni si terranno in maniera sincrona con registrazione delle lezione (materiale su moodle).

 

Watch out! [New course]: starting from this year the lessons will be held in English.

Lectures at the blackboard, slide projection and practical exercises with a computer.

The lectures are in presence.

If the issues related to COVID-19 become more serious, the lessons will be held synchronously with recording of the lessons (material on moodle).

 

Oggetto:

Modalità di verifica dell'apprendimento

Durante il corso, verranno svolte discussioni alla lavagna, assegnazione di semplici progetti di programmazione.

Esame: la studentessa/ lo studente dovrà scegliere un progetto di machine learning, spiegarne la parte teorica e il codice allegato (ad esempio scelto tra quelli di https://paperswithcode.com/) . Dopo la presentazione vi saranno domande generali sul corso. 

Discussion at the blackboard and assignment of programming projects are proposed during the course.

Exam: the student has to select a paper (e.g. from https://paperswithcode.com/), and he/she has to explain the theoretical bases and the Python code. Then some more questions will be asked on the main course points.

Oggetto:

Attività di supporto

Testi consigliati e bibliografia

Oggetto:

  • C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
  • Simon J.D. Prince. Understanding Deep Learning, MIT Press 2023.
  • Vasilev Ivan, Advanced Deep Learning with Python: Design and implement advanced next-generation AI solutions using TensorFlow and PyTorch, Packt Publishing (12 dicembre 2019)
  • K.P. Machine Learning. A Probabilistic Perspective. MIT Press, 2012.
  • T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Data Mining, Inference, and Prediction. 2nd edition. Springer, 2009.
  • I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. MIT Press, 2016.
    R.S. Sutton and A.G. Barto. Reinforcement Learnin. An Introduction. MIT Press, 2017.
  • Andrew NG. Machine Learning Yearning: Technical Strategy for AI Engineers, In the Era of Deep Learning. deeplearning.ai, 2018
  • Christoph Molnar, Interpretable Machine Learning, Independently published (28 febbraio 2022)
  • D. Simon. EVOLUTIONARY OPTIMIZATION ALGORITHMS. John Wiley & Sons, 2013.
  • Plaat A. Deep Reinforcement Learning, pringer Verlag, Singapore; 1st ed. 2022
  • Maria Schuld e Francesco Petruccione, Machine Learning with Quantum Computers, Springer Nature; 2° edizione (18 ottobre 2021)

  • C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
  • Simon J.D. Prince. Understanding Deep Learning, MIT Press 2023.
  • Vasilev Ivan, Advanced Deep Learning with Python: Design and implement advanced next-generation AI solutions using TensorFlow and PyTorch, Packt Publishing (12 dicembre 2019)
  • K.P. Machine Learning. A Probabilistic Perspective. MIT Press, 2012.
  • T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Data Mining, Inference, and Prediction. 2nd edition. Springer, 2009.
  • I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. MIT Press, 2016.
    R.S. Sutton and A.G. Barto. Reinforcement Learnin. An Introduction. MIT Press, 2017.
  • Andrew NG. Machine Learning Yearning: Technical Strategy for AI Engineers, In the Era of Deep Learning. deeplearning.ai, 2018
  • Christoph Molnar, Interpretable Machine Learning, Independently published (28 febbraio 2022)
  • D. Simon. EVOLUTIONARY OPTIMIZATION ALGORITHMS. John Wiley & Sons, 2013.
  • Plaat A. Deep Reinforcement Learning, pringer Verlag, Singapore; 1st ed. 2022
  • Maria Schuld e Francesco Petruccione, Machine Learning with Quantum Computers, Springer Nature; 2° edizione (18 ottobre 2021)


Oggetto:

Note

Questo insegnamento prevede che lo studente sappia programmare in Python ed abbia conoscenze di base di mchine learning.

 

The course assumes that the students are fluent in Python and have basic knowledge of machine learning.

 

Oggetto:

Orario lezioniV

GiorniOreAula
Martedì9:00 - 11:00
Mercoledì14:00 - 16:00

Lezioni: dal 25/09/2023 al 12/01/2024

Nota: Le lezioni del martedì si terranno in aula Wick
Le lezioni del mercoledì si terranno in aula Franzinetti

Registrazione
  • Aperta
    Apertura registrazione
    07/09/2023 alle ore 00:00
    Oggetto:
    Ultimo aggiornamento: 07/09/2023 11:23
    Location: https://fisica-sc.campusnet.unito.it/robots.html
    Non cliccare qui!